

DP-003-1016031

Seat No. _____

B. Sc. (Sem. VI) (CBCS) Examination

April - 2022

Physics: 601

(Nuclear & Particle Physics) (Old Course)

Faculty Code: 003 Subject Code: 1016031

		Subject Code: 1016031
Time: 2	$2\frac{1}{2}$ H	Hours] [Total Marks : 70
Instruct	ions	 (1) Attempt any five questions. (2) Symbols have their usual meaning. (3) Figures on right hand sides indicates full marks
1 (A)	(1)	volume term, EV = Nuclear density =
(B)		we any one : 2 Calculate the binding energy of $_{23}V^{50}$ using semi-empirical mass formula :

$$14A - 13A^{\frac{2}{3}} - 0.583Z^{2} - 19.5(A - 2Z)^{2}A^{-1} \pm 33.5A^{-\frac{1}{2}}$$

(2) Calculate the binding energy of $_{35}Br^{80}$ Atomic masses of Br^{80} , proton and neutron are 79.91 amu, 1.007825 amu, and 1.008665 amu respectively.

1

	(C)	Answer any one :	3	
		(1) Discuss nuclear density.		
		(2) Discuss classification of nuclei.		
(D)		Answer any one in detail :		
		(1) Explain variation of binding energy with		
		mass number.		
		(2) Describe Rutherford's α scattering experiment.		
2	(A)	Fill up the blank:	4	
		(1) γ rays travel with the velocity of		
		(2) The α particle carries unit of positive charge.		
		(3) The half life time of a radioactive substance is		
		given as $T_{\frac{1}{2}} =$		
		(4) 3.7 curie =disintegration/sec.		
	(B)	Solve any one:	2	
		(1) What is the mass of one curie of U^{234} ? 1 Curie = 3.7×10^{10} disintegration/sec.		
		(2) What is the mass of one Rutherford of U^{234} ? 1 Rutherford = 3.7×10^6 disintegration/sec.		
	(C)	Answer any one:	3	
		(1) Explain neutrino hypothesis.		
		(2) Describe general rules of α and β decay.		
	(D)	Answer any one in detail:	5	
		(1) Describe natural radioactive series.		
		(2) Explain half life time of a radioactive substance.		
3	(A)	Fill up the blank:	4	
		(1) In pair productiondisappear and electron hole pair appear.		
		(2) The flat region of the characteristic curve of G M Counter is known asof		
		the counter. (3) An ionization chamber is much less sensitive toparticle.		
		(4) The reaction, ${}_{1}H^{2} + \gamma \rightarrow_{1} H^{1} +_{0} n^{1}$ is known as reaction.		

- (B) Answer any one:
 - (1) State any two (d, α) reactions.
 - (2) State any two (p, n) reactions.
- (C) Answer any one:

3

2

- (1) Expand the following reactions;
 - (i) $B^{10}(\alpha, p)C^{13}$
 - (ii) $F^{19}(p,\alpha)O^{16}$
 - (iii) $Ne^{20}(d, \alpha)F^{18}$
- (2) Obtain equation of threshold energy.
- (D) Answer any one in detail:

5

- (1) Explain principle, construction and working of ionization chamber.
- (2) Derive Q-value equation of a nuclear reaction.
- 4 (A) Do as directed:

4

- (1) In linear accelerator, the length of the cylinders can be given by $L_n =$ ____. (Fill up the blank).
- (2) On which base of the method a synchrotron is worked?
- (3) In_____ frequency of radio frequency oscillator is varied where as it was kept constant in cyclotron. (Fill up the blank).
- (4) The equation $\phi = 2\pi r^2 B$ is known as . (Fill up the blank).
- (B) Solve any one:

2

- (1) A reactor is developing energy at the rate of 32×10^{-6} Watt. How many atoms of U^{235} undergo fission per second? Assume that on the average, an energy of 200 MeV is released per fission.
- (2) Deuterons are accelerated in the cyclotron which has magnetic field of 15000 gauss. Calculate maximum frequency of the dee voltage. Given : $q = 1.6023 \times 10^{-19}$ C Mass of deuteron is 2.014102 amu and $m_p = 1.66 \times 10^{-27}$ kg.

(C) Answer any one:

3

- (1) Describe construction of cyclotron.
- (2) Explain self-Sustained chain reaction.
- (D) Answer any one in detail:

5

- (1) Explain principle of phase stability.
- (2) Describe construction and working of proton synchrotron.
- 5 (A) Fill up the blank:

4

- (1) Small nuclei are fused together to form a single heavy nucleus is called _____.
- (2) The sun radiates _____joule energy per second.
- (3) $4_1H^1 \rightarrow_2 He^4 + 2_1e^0 + 2v + 2\gamma = 24.64 \, MeV$ is the net result of the _____ cycle.
- (4) Two type of magnetic confinement for plasma are under study, magnetic bottle and _____.
- (B) Solve any one:

2

- (1) How much energy released in the following fusion reaction: ${}_{1}H^{2} + {}_{1}H^{2} \rightarrow {}_{1}H^{3} + {}_{1}H^{1} + Q$ Masses of ${}_{1}H^{2}, {}_{1}H^{3}$ and ${}_{1}H^{1}$ are 2.07478 amu, 3.017633 and 1.00759 amu.
- (2) Complete the following reactions:
 - (i) $_{1}H^{1} +_{1}H^{1} \rightarrow \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} .$
 - (ii) $_{1}H^{2} + _{1}H^{1} \rightarrow \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$.
- (C) Answer any one:

3

- (1) Describe nuclear fusion with example.
- (2) Explain hydrogen bomb.
- (D) Answer any one in detail:

5

- (1) Describe source of stellar energy.
- (2) Explain the classification of elementary particles.